Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(30): 12449-12459, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28487366

RESUMO

The onset of type 2 diabetes is characterized by transition from successful to failed insulin secretory compensation to obesity-related insulin resistance and dysmetabolism. Energy-rich diets in rodents are commonly studied models of compensatory increases in both insulin secretion and ß cell mass. However, the mechanisms of these adaptive responses are incompletely understood, and it is also unclear why these responses eventually fail. We measured the temporal trends of glucose homeostasis, insulin secretion, ß cell morphometry, and islet gene expression in C57BL/6NTac mice fed a 60% high-fat diet (HFD) or control diet for up to 16 weeks. A 2-fold increased hyperinsulinemia was maintained for the first 4 weeks of HFD feeding and then further increased through 16 weeks. ß cell mass increased progressively starting at 4 weeks, principally through nonproliferative growth. Insulin sensitivity was not significantly perturbed until 11 weeks of HFD feeding. Over the first 8 weeks, we observed two distinct waves of increased expression of ß cell functional and prodifferentiation genes. This was followed by activation of the unfolded protein response at 8 weeks and overt ß cell endoplasmic reticulum stress at 12-16 weeks. In summary, ß cell adaptation to an HFD in C57BL/6NTac mice entails early insulin hypersecretion and a robust growth phase along with hyperexpression of related genes that begin well before the onset of observed insulin resistance. However, continued HFD exposure results in cessation of gene hyperexpression, ß cell functional failure, and endoplasmic reticulum stress. These data point to a complex but not sustainable integration of ß cell-adaptive responses to nutrient overabundance, obesity development, and insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Estresse do Retículo Endoplasmático , Hiperinsulinismo/patologia , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fatores de Tempo
2.
Endocrinology ; 152(4): 1300-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21285317

RESUMO

Circulating levels of matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitor of metalloproteinases (TIMPs), are altered in human obesity and may contribute to its pathology. TIMP-2 exerts MMP-dependent (MMP inhibition and pro-MMP-2 activation) and MMP-independent functions. To assess the role of TIMP-2 in a murine model of nutritionally induced obesity, weight gain in wild-type and TIMP-2 deficient [knockout (KO)] mice fed a chow or high-fat diet (HFD) was determined. The effects of diet on glucose tolerance and insulin sensitivity, as well as pancreatic ß-cell and adipocyte physiology, were assessed. Chow-fed TIMP-2 KO mice of both sexes became obese but maintained relatively normal glucose tolerance and insulin sensitivity. Obesity was exacerbated on the HFD. However, HFD-fed male, but not female, TIMP-2 KO mice developed insulin resistance with reduced glucose transporter 2 and pancreatic and duodenal homeobox 1 levels, despite increased ß-cell mass and hyperplasia. Thus, although ß-cell mass was increased, HFD-fed male TIMP-2 KO mice develop diabetes likely due to ß-cell exhaustion and failure. TIMP-2 mRNA, whose expression was greatest in sc adipose tissue, was down-regulated in HFD-fed wild-type males, but not females. Furthermore, HFD increased membrane type 1-MMP (MMP-14) expression and activity in male, but not female, sc adipose tissue. Strikingly, MMP-14 expression increased to a greater extent in TIMP-2 KO males and was associated with decreased adipocyte collagen. Taken together, these findings demonstrate a role for TIMP-2 in maintaining extracellular matrix integrity necessary for normal ß-cell and adipocyte physiology and that loss of extracellular matrix integrity may underlie diabetic and obesogenic phenotypes.


Assuntos
Obesidade/metabolismo , Inibidor Tecidual de Metaloproteinase-2/deficiência , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Gorduras na Dieta/efeitos adversos , Feminino , Técnicas Imunoenzimáticas , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Masculino , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia de Fluorescência , Obesidade/induzido quimicamente , Reação em Cadeia da Polimerase , Fatores Sexuais , Inibidor Tecidual de Metaloproteinase-2/genética , Aumento de Peso/genética
3.
Am J Physiol Endocrinol Metab ; 299(5): E786-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20716695

RESUMO

The physiological mechanisms that preserve pancreatic ß-cell mass (BCM) are not fully understood. Although the regulation of islet function by the autonomic nervous system (ANS) is well established, its potential roles in BCM homeostasis and compensatory growth have not been adequately explored. The parasympathetic vagal branch of the ANS serves to facilitate gastrointestinal function, metabolism, and pancreatic islet regulation of glucose homeostasis, including insulin secretion. Given the functional importance of the vagus nerve and its branches to the liver, gut, and pancreas in control of digestion, motility, feeding behavior, and glucose metabolism, it may also play a role in BCM regulation. We have begun to examine the potential roles of the parasympathetic nervous system in short-term BCM maintenance by performing a selective bilateral celiac branch-vagus nerve transection (CVX) in normal Sprague-Dawley rats. CVX resulted in no detectable effects on basic metabolic parameters or food intake through 1 wk postsurgery. Although there were no differences in BCM or apoptosis in this 1-wk time frame, ß-cell proliferation was reduced 50% in the CVX rats, correlating with a marked reduction in activated protein kinase B/Akt. Unexpectedly, acinar proliferation was increased 50% in these rats. These data suggest that the ANS, via the vagus nerve, contributes to the regulation of BCM maintenance at the level of cell proliferation and may also mediate the drive for enhanced growth under physiological conditions when insulin requirements have increased. Furthermore, the disparate effects of CVX on ß-cell and acinar cells suggest that the endocrine and exocrine pancreas respond to different neural signals in regard to mass homeostasis.


Assuntos
Células Secretoras de Insulina/fisiologia , Nervo Vago/fisiologia , Animais , Apoptose/fisiologia , Glicemia/análise , Peso Corporal/fisiologia , Processos de Crescimento Celular/fisiologia , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Microscopia Confocal , Ratos , Ratos Sprague-Dawley , Nervo Vago/cirurgia , Nervo Vago/ultraestrutura
4.
Am J Physiol Endocrinol Metab ; 294(4): E679-87, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18230696

RESUMO

The physiological mechanisms underlying pancreatic beta-cell mass (BCM) homeostasis are complex and not fully resolved. Here we examined the factors contributing to the increased BCM following a mild glucose infusion (GI) whereby normoglycemia was maintained through 96 h. We used morphometric and immunochemical methods to investigate enhanced beta-cell growth and survival in Sprague-Dawley rats. BCM was elevated >2.5-fold over saline-infused control rats by 48 h and increased modestly thereafter. Unexpectedly, increases in beta-cell proliferation were not observed at any time point through 4 days. Instead, enhanced numbers of insulin(+) cell clusters and small islets (400-12,000 microm(2); approximately 23- to 124-microm diameter), mostly scattered among the acini, were observed in the GI rats by 48 h despite no difference in the numbers of medium to large islets. We previously showed that increased beta-cell growth in rodent models of insulin resistance and pancreatic regeneration involves increased activated Akt/PKB, a key beta-cell signaling intermediate, in both islets and endocrine cell clusters. GI in normal rats also leads to increased Akt activation in islet beta-cells, as well as in insulin(+) and insulin(-) cells in the common duct epithelium and endocrine clusters. This correlated with strong Pdx1 expression in these same cells. These results suggest that mechanisms other than proliferation underlie the rapid beta-cell growth response following a mild GI in the normal rat and involve Akt-regulated enhanced beta-cell survival potential and neogenesis from epithelial precursors.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Regeneração/fisiologia , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Insulina/sangue , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Ilhotas Pancreáticas/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Cloreto de Sódio/farmacologia
5.
Diabetes ; 57(2): 424-31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17991758

RESUMO

OBJECTIVE: Prolonged exposure of isolated islets of Langerhans to elevated levels of fatty acids, in the presence of high glucose, impairs insulin gene expression via a transcriptional mechanism involving nuclear exclusion of pancreas-duodenum homeobox-1 (Pdx-1) and loss of MafA expression. Whether such a phenomenon also occurs in vivo is unknown. Our objective was therefore to ascertain whether chronic nutrient oversupply inhibits insulin gene expression in vivo. RESEARCH DESIGN AND METHODS: Wistar rats received alternating 4-h infusions of glucose and Intralipid for a total of 72 h. Control groups received alternating infusions of glucose and saline, saline and Intralipid, or saline only. Insulin and C-peptide secretion were measured under hyperglycemic clamps. Insulin secretion and gene expression were assessed in isolated islets, and beta-cell mass was quantified by morphometric analysis. RESULTS: Neither C-peptide secretion nor insulin sensitivity was different among infusion regimens. Insulin content and insulin mRNA levels were lower in islets isolated from rats infused with glucose plus Intralipid. This was associated with reduced Pdx-1 binding to the endogenous insulin promoter, and an increased proportion of Pdx-1 localized in the cytoplasm versus the nucleus. In contrast, MafA mRNA and protein levels and beta-cell mass and proliferation were unchanged. CONCLUSIONS: Cyclical and alternating infusions of glucose and Intralipid in normal rats inhibit insulin gene expression without affecting insulin secretion or beta-cell mass. We conclude that fatty acid inhibition of insulin gene expression, in the presence of high glucose, is an early functional defect that may contribute to beta-cell failure in type 2 diabetes.


Assuntos
Emulsões Gordurosas Intravenosas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Transativadores/metabolismo , Animais , Glicemia/metabolismo , Peptídeo C/efeitos dos fármacos , Peptídeo C/metabolismo , Emulsões Gordurosas Intravenosas/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/efeitos dos fármacos , Hiperglicemia , Infusões Intravenosas , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transativadores/efeitos dos fármacos
6.
Diabetes ; 55(12): 3289-98, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17130472

RESUMO

beta-Cell mass is determined by a dynamic balance of proliferation, neogenesis, and apoptosis. The precise mechanisms underlying compensatory beta-cell mass (BCM) homeostasis are not fully understood. To evaluate the processes that maintain normoglycemia and regulate BCM during pancreatic regeneration, C57BL/6 mice were analyzed for 15 days following 60% partial pancreatectomy (Px). BCM increased in Px mice from 2 days onwards and was approximately 68% of the shams by 15 days, partly due to enhanced beta-cell proliferation. A transient approximately 2.8-fold increase in the prevalence of beta-cell clusters/small islets at 2 days post-Px contributed substantially to BCM augmentation, followed by an increase in the number of larger islets at 15 days. To evaluate the signaling mechanisms that may regulate this compensatory growth, we examined key intermediates of the insulin signaling pathway. We found insulin receptor substrate (IRS)2 and enhanced-activated Akt immunoreactivity in islets and ducts that correlated with increased pancreatic duodenal homeobox (PDX)1 expression. In contrast, forkhead box O1 expression was decreased in islets but increased in ducts, suggesting distinct PDX1 regulatory mechanisms in these tissues. Px animals acutely administered insulin exhibited further enhancement in insulin signaling activity. These data suggest that the IRS2-Akt pathway mediates compensatory beta-cell growth by activating beta-cell proliferation with an increase in the number of beta-cell clusters/small islets.


Assuntos
Células Secretoras de Insulina/fisiologia , Pancreatectomia , Actinas/metabolismo , Animais , Glicemia , Divisão Celular , Ciclina D2 , Ciclinas/metabolismo , Immunoblotting , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação , Regeneração
7.
Diabetes ; 54(8): 2294-304, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16046294

RESUMO

The physiological mechanisms underlying the compensatory growth of beta-cell mass in insulin-resistant states are poorly understood. Using the insulin-resistant Zucker fatty (fa/fa) (ZF) rat and the corresponding Zucker lean control (ZLC) rat, we investigated the factors contributing to the age-/obesity-related enhancement of beta-cell mass. A 3.8-fold beta-cell mass increase was observed in ZF rats as early as 5 weeks of age, an age that precedes severe insulin resistance by several weeks. Closer investigation showed that ZF rat pups were not born with heightened beta-cell mass but developed a modest increase over ZLC rats by 20 days that preceded weight gain or hyperinsulinemia that first developed at 24 days of age. In these ZF pups, an augmented survival potential of beta-cells of ZF pups was observed by enhanced activated (phospho-) Akt, phospho-BAD, and Bcl-2 immunoreactivity in the postweaning period. However, increased beta-cell proliferation in the ZF rats was only detected at 31 days of age, a period preceding massive beta-cell growth. During this phase, we also detected an increase in the numbers of small beta-cell clusters among ducts and acini, increased duct pancreatic/duodenal homeobox-1 (PDX-1) immunoreactivity, and an increase in islet number in the ZF rats suggesting duct- and acini-mediated heightened beta-cell neogenesis. Interestingly, in young ZF rats, specific cells associated with ducts, acini, and islets exhibited an increased frequency of PDX-1+/phospho-Akt+ staining, indicating a potential role for Akt in beta-cell differentiation. Thus, several adaptive mechanisms account for the compensatory growth of beta-cells in ZF rats, a combination of enhanced survival and neogenesis with a transient rise in proliferation before 5 weeks of age, with Akt serving as a potential mediator in these processes.


Assuntos
Envelhecimento , Resistência à Insulina , Ilhotas Pancreáticas/patologia , Obesidade/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Diferenciação Celular , Divisão Celular , Sobrevivência Celular , Proteínas de Homeodomínio/análise , Marcação In Situ das Extremidades Cortadas , Ilhotas Pancreáticas/química , Masculino , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Zucker , Transdução de Sinais , Transativadores/análise
8.
J Gene Med ; 6(8): 913-22, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15293350

RESUMO

BACKGROUND: For the topical application of DNA vector complexes to the airways, specific extracellular barriers play a major role. In particular, short contact time of complexes with the cell surface caused by the mucociliary clearance hinders cellular uptake of complexes. The aim of this study was to evaluate the ability of magnetofection, a technique based on the principle of magnetic drug targeting, to overcome these barriers in comparison with conventional nonviral gene transfer methods such as lipofection and polyfection. METHODS: Experiments were carried out on permanent (16HBE14o-) and primary airway epithelial cells (porcine and human), and native porcine airway epithelium ex vivo. Transfection efficiency and dose-response relationship of magnetofection were examined by luciferase reporter gene expression. Sedimentation patterns and uptake of gene transfer complexes were characterized by fluorescence and electron microscopy, respectively. RESULTS: We show that (i) application of a magnetic field allows the magnetofectins to sediment and to enrich at the cell surface within a few minutes, (ii) magnetofection bears an improved dose-response relationship, (iii) magnetofection enhances transfection efficiency in both, permanent and primary airway epithelial cells, and (iv) magnetofection leads to significant transgene expression at very short incubation times in an ex vivo airway epithelium organ model. CONCLUSIONS: Magnetofection provides a potential novel method, which may overcome fundamental limitations of nonviral gene transfer to the airways. Due to the accelerated enrichment at the cell surface it may be of major interest for in vivo applications, where long-term incubation times at the target tissue are hardly achievable.


Assuntos
Células Epiteliais , Marcação de Genes/métodos , Magnetismo , Transfecção/métodos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Epitélio/ultraestrutura , Vetores Genéticos , Humanos , Microscopia Eletrônica , Suínos
9.
J Gene Med ; 6(8): 923-36, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15293351

RESUMO

BACKGROUND: Gene delivery by the use of magnetic forces, so-called magnetofection, has been shown to enhance transfection efficiency of viral and non-viral systems up to several-hundred-fold. For this purpose gene carriers, such as polyethylenimine (PEI), are associated with superparamagnetic nanoparticles and complexed with plasmid DNA. Gene delivery is targeted by the application of a magnetic field. METHODS: To investigate the underlying mechanism, we studied the impact of the applied magnetic field on the transfection process of PEI-coated superparamagnetic iron oxide gene vectors (magnetofectins) using various cell lines. In particular, we addressed the question whether accelerated sedimentation of magnetofectins is the driving force or if the magnetic field itself directly influences the endocytic processing of the magnetofectins. The cellular uptake mechanism of magnetofectins was studied by electron microscopy and transfection experiments in the presence of various inhibitors that operate at different steps of endocytosis. RESULTS: In this study we could show that cellular uptake of magnetofectins proceeds obviously by endocytosis. Cellular uptake of magnetofectins behaves almost analogously as compared with PEI polyplexes. Besides unspecific endocytosis, apparently clathrin-dependent as well as caveolae-mediated endocytic uptake is involved. CONCLUSIONS: The magnetic field itself does not alter the uptake mechanism of magnetofectins. Obviously, the magnetic forces lead to an accelerated sedimentation of magnetofectins on the cell surface and do not directly affect the endocytic uptake mechanism. So further improvement of magnetic field application could lead to efficient targeting of gene expression into the desired organ and tissue in vivo.


Assuntos
Endocitose , Magnetismo , Polietilenoimina/química , Transfecção/métodos , Antimicina A/farmacologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Vetores Genéticos , Células HeLa , Humanos , Luciferases/metabolismo , Microscopia Eletrônica , Plasmídeos
10.
J Mol Med (Berl) ; 81(11): 708-17, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14574456

RESUMO

The transport of exogenous DNA into the nucleus of eukaryotic cells is a prerequisite for successful gene delivery. To favor nuclear transport we synthesized a tetramer of the nuclear localization signal (NLS) of the SV40 large T-antigen as a novel nonviral gene delivery vector. This 4.4-kDa lysine-rich peptide (NLSV404) binds and compacts DNA by electrostatic interaction and forms stable polyplexes. Apart from its sequence-specific potency to mediate nuclear accumulation of conjugated albumin, NLSV404 also displays properties of nuclear transport for plasmid DNA as confirmed by fluorescence in situ hybridization. Further, NLSV404 polyplexes are shown to efficiently transfect various cell lines such as 16HBE14o-, HeLa S6, and Cos7 cells. NLSV404 polyplexes displayed at least 20-fold higher transfection rates than analogous polyplexes formed by the nuclear transport-deficient mutant sequence cNLS. Using growth-arrested cells, NLSV404 complexes were at least 100-fold more efficient than cNLS complexes. Combination of NLSV404 peptide but not of cNLS peptide with preformed polyethylenimine and dendrimer DNA complexes resulted in a strong increase in transfection efficiency. Incubation of cells prior to transfection with NLSV404 polyplexes with excess free peptide NLSV404 but not with cNLS resulted in a dose-dependent dramatic decrease in the transfection rate, suggesting a sequence-specific competitive inhibition. These results indicate that NLSV404 mediates nuclear accumulation of transfected plasmid DNA and that it can be a highly useful component of nonviral gene vectors.


Assuntos
Núcleo Celular/metabolismo , Peptídeos/química , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Antígenos Transformantes de Poliomavirus/química , Linhagem Celular , Células HeLa , Humanos , Potenciais da Membrana , Dados de Sequência Molecular , Peptídeos/síntese química , Mucosa Respiratória , Albumina Sérica/metabolismo , Transfecção/métodos
11.
J Biol Chem ; 278(13): 11411-8, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12519756

RESUMO

We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.


Assuntos
Motivos de Aminoácidos , Arginina/metabolismo , Produtos do Gene tat/metabolismo , Plasmídeos , Biopolímeros , Células Cultivadas , Produtos do Gene tat/química , Vetores Genéticos , Humanos , Hibridização in Situ Fluorescente , Cinética , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...